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Classical analogy of the concept of collective variables? 
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Departamento de Fisica, Universidade de Coimbra, Coimbra, Portugal 

Received 3 September 1980, in final form 5 March 1981 

Abstract. We discuss an analogy between certain types of scleronomic and holonomic 
constraints in classical mechanics, and the concept of collective degrees of freedom in 
quantum mechanics. We use Hamilton equations combined with the adiabatic approxi- 
mation to derive expressions for the mass parameter and the potential, involving a small 
number of degrees of freedom, and these are compared with expressions obtained by Villars 
for a quantal system, using a similar approach. Finally we propose a criterion of collectivity. 

1. Introduction 

The objective of this paper is to see in what sense it is possible to describe the behaviour 
of a system with a large number of degrees of freedom by means of a small number of 
parameters, i.e. to suppress unnecessary or redundant degrees of freedom. 

This idea is based on the assumption that intrinsic and collective motions of the 
many-body system are approximately decoupled. This hypothesis leads to the concept 
of a ‘collective’ coordinate a associated with a ‘collective path’, an effective mass &(a), 
and a ‘collective’ potential V ( a ) ,  with which we construct the ‘collective’ Hamiltonian. 

In our treatment we go beyond the harmonic approximation, i.e. we consider the 
possibility of the amplitudes becoming large, although the velocity is always kept small. 

We consider a classical system, but our method is equivalent to those used for 
treating similar problems in quantal systems of many particles. 

The equations obtained are compared with those that Villars (1977) has reached 
based on adiabatic time-dependent Hartree-Fock (ATDHF) theory. 

The possibility of reducing the number of coordinates is suggested by the Hamilton- 
Jacobi theory (Goldstein 1959). Indeed, this theory enables us to define a surface in 
phase space characterised by two parameters a and T. This surface is such that, if at 
some initial time the system lies on the surface, it will remain there. 

Nowtwe say that such a surface is stationary if the system, left initially at some point 
in its vicinity, does not leave that vicinity. The method we develop enables us to 
construct such a surface in the adiabatic approximation. Our criterion provides a 
sufficient condition for the validity of the replacement of the actual forces by con- 
straints. We associate this criterion with the stability of the surface. These ideas are 
illustrated with two simple problems in classical mechanics. 

t Work supported by Instituto Nacional de InvestigaCHo Cientifica, Lisbon, Portugal. 
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2240 L P Brito and C A  Sousa 

2. Classical 'collective' Hamiltonian in the adiabatic approximation 

Let us consider a system of N particles whose Hamiltonian is written as 

1 N  

2 i , j=1 
H(qi, pi) =- 1 PiPj(M-')ij(qI, * * * qN)+ V(qI ,  * * * 9 qN) (2.1) 

where qi, pi, Mii(q) and V ( q )  denote respectively the generalised coordinates, the 
generalised momenta, the mass parameters and the potential energy. 

The Hamilton equations 

are derived by requiring that the action integral 

is stationary. 
We assume that the system thus described exhibits a particular type of behaviour 

which can be characterised by a couple of parameters a and T. This means that there 
are modes of motion of the whole system for which the values taken by the ql and pi  at 
successive instants of time are unambiguously determined by the values of a and T at 
the same instants: 

qi(t) = qc(a(t), ~ ( t ) )  pi(t) = ~ i ( a ( t ) ,  4 0 ) .  (2.3) 

qi = gi (a  ) Pi = .rrfi(a), (2.4) 

In the adiabatic approximation (small T )  we propose the parametrisation 

where T is assumed to be small. 
In this hypothesis we have 

%(a, T )  = (.r2/2)&-'(a) + V ( a )  (2.5) 

where T plays the role of the momentum canonically conjugate to a. 
These equations allow the Lagrangian to be expressed as 

2 ( a ,  T )  = CiT - %(a, T )  (2.6) 

provided we introduce the normalisation condition 
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and 

Equation (2.6) follows in a straightforward way from equations (2.4) and the 
conventional Lagrangian 

L = piqi - H, 
1 

The action principle applied to equation (2.6) leads to the equations 

ci = ax/ar 7i = -az/aa. (2.9) 
These equations describe the best time evolution compatible with the restrictions 

With equations (2.5) and (2.6) we can write 
corresponding to equations (2.3). 

From the equation of motion for pi we find 

(2.10) 

(2.11) 

Inserting here the expressions for ci and 7i as given by equations (2.10) we obtain, 
dropping the quadratic terms in 7r, 

Using the equation of motion for qc we obtain, in a similar way, 

3 ci = c 7rA(a)(M-1)l,, 

" , m a )  z-=c (M-l)l,A(d* 

(2.12) 
da J 

which is equivalent to 

(111) 

The self-consistent treatment of equations (I), (11) and (111) determines the functions 

These equations provide the necessary conditions in order that a system, placed at a 
point of the surface, at some initial time, remains there. However, they do not say 
anything about the stability of the surface, since such a system, represented by a point 
placed in the vicinity of that surface, is subject to the action of forces that can either hold 
it oscillating in the vicinity of the surface or push it away from this one. 

The study of the stability implies the explicit consideration of the forces involved, as 
we shall explain in § 4. 

The generalisation to higher orders in 7~ is straightforward. We shall consider only 
the first-order correction. Taking into account the properties of the quantities involved 
under time reversal, we may write 

ql = gl (a)  + r 2 h I  ( a )  PI = V f l b ) .  (2.13) 

dg1 
I 

f,(a) and g1(a). 
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The canonical conjugation between a and T demands now a new normalisation 
condition, involving the hi(a) ,  in addition to the old one (equation (I)): 

The collective Hamiltonian %'(a, T )  takes the same form as before, provided we add 
a new term to the expression for the collective mass: 

(2.14) 

The equation of motion for pi gives also, besides (11), the equation 

The equation of motion for qi gives, instead of (111), 

The new set of conditions may be compared with equations of the type obtained by 
Villars using an appropriate parametrisation of the time-dependent Hartree-Fock state 
(Toukan and Villars 1981). 

Before ending this section we shall notice the internal consistency of the equations 
obtained. Indeed, multiplying equation (111) by fi(a), summing over the label i, and 
paying attention to condition (I), we obtain the equation (2.8). The same may be said 
for equations (IV), (V) and (VI). 

3. Analogy with the Villars ATDHF theory 

To study some collective aspects of the nuclear dynamics, Villars uses independent- 
particle wavefunctions of the type 

@(a, r) = exp( i rd)@(a)  (3.1) 

where @(a)  describes a static deformation and 6 is a single-particle operator even 
under time reversal. The state @(a, T )  depends on the time through a ( t )  and ~ ( t ) .  To 
go from @(a)  to @.(a, r) corresponds to introducing the velocity with which the 
deformation develops. 

The adiabatic approximation consists of assuming that the state @(a, T )  is not very 
different from @(a)  at any time, i.e. that the phase factor exp( i r6)  can be expanded in 
powers of T,  

The states @(a), the operator 6 and the time evolution of a and r are determined 
by the time-dependent variational principle. From this, Villars finds that a and T 

satisfy the canonical equations (2.9) with %'(a, T )  given by equation (2.5) and 
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provided one chooses to normalise the operator d ( a )  by the condition 

(@(a)/[iP, d]I@(a)> = 1 (VI) 

where fi is the operator of infinitesimal displacement in a defined in such a way that 

(3.4) 

Furthermore, the variational principle gives 

Equations (Vl), (V,) and (V3) determine the states @(a)  and the operator d(a).  
We will show now the similarity between this set of equations and equations (I), (11) 

and (111) which we have obtained before. In order to do this, it is convenient first to 
write our equations in terms of Poisson brackets. 

Let P and Q be the generator functions which are responsible for the variations of qi 
and p i  with a and IT respectively. 

Then we must write 

(3.6) 

where the classical Poisson brackets are defined in the conventional way (Goldstein 
1959). 

It is interesting to notice that P and Q satisfy the relation of canonically conjugate 
variables, i.e. 

This relation is satisfied with pi  = 0 *and qi = g i (a ) ,  which corresponds to the 
calculation of the expectation value of [iP, d] in the state /@(a))  as is expressed by 
equation (VI), So, by using the classical analogy between Poisson brackets and 
commutators (Dirac 1958), we prove the formal equivalence of equation (VI) and the 
normalisation condition (I). 

We consider now the 'collective' potential V(a)  which satisfies equation (11). By 
means of simple transformations we can write 

since the relation dH/aqi = aV/aqi is valid when pi = 0. 
So we have 

(3.9) 
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and, in the same way, 

(3.10) 

when pi = 0 and qi = gi(cu). 
These equations and the properties of the Poisson brackets allow us to conclude 

(3.11) 

where SF means 

The square bracket in this equation is equivalent to the calculation of the expec- 
tation value of 

in the state ]@(a))  expressed by equation (VJ. 

equation (111) in the form 
Finally we must refer to the expressions involving the mass parameter. We write 

A- ' (a){P,  qi}= -1 (M-')ij{Q? p i } .  (3.12) 

Then, by means of a simple evaluation of {{H, Q}, si}, we can rewrite equation (3.12) in 
a very suitable way 

{({H, QI+A-'(a)P), q i ) = O  (3.13) 

i 

or, as previously, 

= 0. 
pi=o 

S ({H, Q} +A - l (a)P)  
4i = 

(3.14) 

By means of the classical analogy that we have already used, it is very easy to exhibit 
the formal equivalence between this relation and equation (V,) in Villar's theory. 

4. Application to simple classical problems 

In  order to clarify the general ideas developed so far, we first consider a particle which is 
subject to movement on a plane, governed by the canonical equations (2.9) and the 
Hamiltonian 

Changing to polar coordinates 

q1= r cos 8 q2 = r sin 0 (4.2) 
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we have 
2 

+- (r-a14 H='+& P 2  
2m 2mr2 2 

and 

lie = 0. * Pe . Pr . P ;  2 K ( r - a ) 3  8=- 
mr pr=--  I = -  

m m2r3 

The equations of motion for r and 8 take the form 

my-%+ 2 K ( r  - a ) 3  = 0 
m r  

2245 

(4.3) 

(4.4) 

(4.5) 

i = O .  (4.6) 
Now we consider two kinds of parametrisation which are equivalent to introducing 

In the first case the solution for equation (4.5) is immediately given as 
the constraints r = ro = constant and 8 = O0 = constant respectively. 

r0(Pe)=a+--(=) 1 p ;  

if we assume that the condition 

(4.7) 

(4.8) 

holds, which expresses the validity of the adiabatic approximation in this case. We have 
used pe  = mre b =constant. 

This type of motion can be characterised by the parameters (6, p a ) ,  the functions of 
the parametrisation being given by 

2 

gl = ro cos 8 g2 = ro sin 8 f l  = -sin 81ro f 2  = cos 6/ro. (4.9) 

We may also write the Hamiltonian 

P'B x=-+ WO 
2 J  

(4.10) 

(4.11) 

and 

WO = W o ( P e ) ) .  (4.12) 

We shall prove now that equation (4.7) corresponds to a stable solution. 
Indeed, if the circular trajectory of radius ro is slightly perturbed, giving r = r0 + dr, 

we can write the equation of the time evolution of the deviation Sr as 

6K si.'+ [ 3p,+- ( ro  - a )  m ro m 
(4.13) 

This is the familiar equation of a harmonic oscillator, and, as the quantity in square 
brackets is positive, it leads to an oscillating solution. This means that, if the particle is 
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slightly deviated from its initial path, there is a restoring force that keeps it moving 
around the solution r = ro for any time. This fact enables us to conclude that the initial 
solution is stable, and so the surface defined by the parametrisation used here is also 
stable. 

Let us now analyse the second case. Equation (4.5) can be given in the form 

mY+2K(r - a ) 3  = 0 (4.14) 

with a solution that we assume to be known r( t )  = cp(Cl, C2, t ) .  
We must again make some reference to the functions of the parametrisation 

gl = r cos eo g2 = r sin Bo f l  = COS eo f 2  = sin Bo (4.15) 

and to the Hamiltonian 

P ?  K 4 X = - + - ( r  - a ), 
2m 2 

(4.16) 

where r and p r  are now the useful parameters to characterise the motion. 
It is easily shown that in both cases the functions of the parametrisation are 

consistent with the conditions necessary to define the ‘collective’ degrees of freedom 
given by equations (I), (11) and (111). 

As before, we can say something about the stability of the solution obtained in that 
case if the particle is slightly perturbed and we investigate its behaviour as a 
consequence of that perturbation. 

We shall write now a new set of functions to characterise the motion of the particle 

(4.17) 
r(t)  = cp(C1, G, t )  + S r  P r o )  = md(C1, cz, t ) + S P ,  

e ( t )  = eo + Se P6’(t) = SP.9 

and the time evolution of the system must obey the Hamilton equations as usual. 
Thus we can write 

(4.18) 

= 0 (4.19) 

which means that the function M ( t )  is always an increasing or decreasing function of 
time. 

There is no neighbourhood of the initial solution where the motion of the particle 
remains for any time. The solution is not stable, and so we can say nothing about the 
surface that this parametrisation defines. 

As a conclusion of this simple example we have presented, we can now elaborate a 
criterion of collectivity. In fact we must remark that only the variables (e, P o )  and the 
corresponding functions (g i (8 ,  P e ) ,  f i(e,  P o ) )  are associated with a stable solution for the 
motion of the particle. 

This suggests, as we have already inferred, that the natural criterion for the 
definition of the ‘collective’ path should be that of the stability of the corresponding 
solution. 

Finally we consider a two-dimensional liquid drop, and we define for this model the 
collective mass parameter and the collective potential. 
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We deform the liquid drop in such a way that the displacement vector is 

u(x ,  y)=a(x i -y j )  (4.20) 

and the momentum vector is 

P ( X ,  Y)=TKbi-Yi) (4.21) 

where a and T are canonically conjugate and K is a constant which satisfies a 
normalisation condition equivalent to equation (I), i.e. 

11 dx d y K ( x 2 + y y 2 ) u = 1  

cr being the surface density of the particles. 
From equation (4.22) we can write 

(4.22) 

K = 2 /na4a  (4.23) 

where a is the radius of the liquid drop. 

be written in the form 
Equations (4.20) and (4.21) related by the condition (4.22) allow the Lagrangian to 

9 ( a ,  T) = Td -%(a, T). (4.24) 

Looking for the function %(a, T), we first evaluate the kinetic energy 
2 r 2 K 2  T 

( x  + y  )a=- Y ( T ) = ~ - - =  11 dxdy- 
i 2m 2m nma4a'  

p:  (4.25) 

It is natural to assume that the range of the two-body interaction is of the order of 
the single-particle radius. Under such conditions, the potential energy will be propor- 
tional to the surface extension. 

In fact, if each particle interacts with its nearest neighbours, the potential will be 

(4.26) 

where v is the interaction between any two particles, N is the total number of particles, 
n is the number of particles which interact with each one of them, and N '  is the number 
of particles that surround the drop. The second term compensates for the fact that the 
first term overestimates the interactions of the surface particles which interact only with 
n/2 particles instead of n. 

If we suppose that each particle has a radius equal to ro, N '  can be given by 

N' = S/2ro (4.27) 

where S is the length of the ellipse which results from the deformation of the drop and ro 
is defined by the equation 

A = N I I r i .  (4.28) 

A represents the area of the liquid drop. 
If the deformation is small enough we can approximate S to the expression 

s = 211(a +a2a/4).  (4.29) 
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Then, dropping the constant term in equation (4.26), we can write 

v = -ca2  (4.30) 

where C is given by 

C = IIau/4ro (4.31) 

when we use equations (4.27) and (4.29) and choose, for this model, n = 4. 

respectively by 
Finally, we can define a ‘collective’ mass parameter and a ‘collective’ potential given 

4 = $ m u a 4 ~  (4.32) 

and 

(4.33) V(a)=-Ca . 

w = ( ~ / 2 m a ~ u r ~ ) ~ ’ ~ .  (4.34) 

2 

We can also derive, for the frequency of the oscillation of the drop, the expression 

Remark. The symbol II means 3.1415. 

5. Conclusion 

In the present paper we have shown that, by using a parametrisation of the coordinates, 
one is able to describe, under some circumstances, the dynamical features of a 
many-body system in terms of two (or few) parameters, without specifying the indivi- 
dual coordinates and velocities. 

We have assumed the adiabatic approximation and followed a classical formulation 
in order to get the classical equivalent to a ‘collective’ Hamiltonian. We have obtained 
necessary conditions which the parametrisation functions should obey. We have 
emphasised the formal equivalence between these and Villar’s corresponding equa- 
tions. This formalism has been applied to simple model systems. We have used, in the 
first case, two different parametrisations which are formally equivalent to the intro- 
duction of constraints, allowing us to reduce the number of degrees of freedom to those 
necessary for the study of a particular behaviour of the system. 

A careful analysis of the different kinds of solution has allowed us to formulate a 
sufficient condition of collectivity to complete the necessary conditions referred to 
before. 

In conclusion, it seems that the first example enables us to set up an analogy between 
the introduction of certain types of constraints in classical mechanics and the definition 
of the collective degrees of freedom in a quantal many-body problem. It also suggests 
that the existence of great stability trajectories can be associated with the collective 
evolution of a many-particle system. 

With the second model we have in mind to illustrate a more realistic application of 
our basic ideas. 
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